Metabolome-scale prediction of intermediate compounds in multistep metabolic pathways with a recursive supervised approach
نویسندگان
چکیده
MOTIVATION Metabolic pathway analysis is crucial not only in metabolic engineering but also in rational drug design. However, the biosynthetic/biodegradation pathways are known only for a small portion of metabolites, and a vast amount of pathways remain uncharacterized. Therefore, an important challenge in metabolomics is the de novo reconstruction of potential reaction networks on a metabolome-scale. RESULTS In this article, we develop a novel method to predict the multistep reaction sequences for de novo reconstruction of metabolic pathways in the reaction-filling framework. We propose a supervised approach to learn what we refer to as 'multistep reaction sequence likeness', i.e. whether a compound-compound pair is possibly converted to each other by a sequence of enzymatic reactions. In the algorithm, we propose a recursive procedure of using step-specific classifiers to predict the intermediate compounds in the multistep reaction sequences, based on chemical substructure fingerprints/descriptors of compounds. We further demonstrate the usefulness of our proposed method on the prediction of enzymatic reaction networks from a metabolome-scale compound set and discuss characteristic features of the extracted chemical substructure transformation patterns in multistep reaction sequences. Our comprehensively predicted reaction networks help to fill the metabolic gap and to infer new reaction sequences in metabolic pathways. AVAILABILITY AND IMPLEMENTATION Materials are available for free at http://web.kuicr.kyoto-u.ac.jp/supp/kot/ismb2014/
منابع مشابه
Metabolome-scale de novo pathway reconstruction using regioisomer-sensitive graph alignments
MOTIVATION Recent advances in mass spectrometry and related metabolomics technologies have enabled the rapid and comprehensive analysis of numerous metabolites. However, biosynthetic and biodegradation pathways are only known for a small portion of metabolites, with most metabolic pathways remaining uncharacterized. RESULTS In this study, we developed a novel method for supervised de novo met...
متن کاملSupervised de novo reconstruction of metabolic pathways from metabolome-scale compound sets
MOTIVATION The metabolic pathway is an important biochemical reaction network involving enzymatic reactions among chemical compounds. However, it is assumed that a large number of metabolic pathways remain unknown, and many reactions are still missing even in known pathways. Therefore, the most important challenge in metabolomics is the automated de novo reconstruction of metabolic pathways, wh...
متن کاملIn-silico Metabolome Target Analysis Towards PanC-based Antimycobacterial Agent Discovery
Mycobacterium tuberculosis, the main cause of tuberculosis (TB), has still remained a global health crisis especially in developing countries. Tuberculosis treatment is a laborious and lengthy process with high risk of non compliance, cytotoxicity adverse events and drug resistance in patient. Recently, there has been an alarming rise of drug resistant in TB. In this regard, it is an unmet need...
متن کاملIn-silico Metabolome Target Analysis Towards PanC-based Antimycobacterial Agent Discovery
Mycobacterium tuberculosis, the main cause of tuberculosis (TB), has still remained a global health crisis especially in developing countries. Tuberculosis treatment is a laborious and lengthy process with high risk of non compliance, cytotoxicity adverse events and drug resistance in patient. Recently, there has been an alarming rise of drug resistant in TB. In this regard, it is an unmet need...
متن کاملCategorization of metabolome in bacterial systems
Analyses of biological databases such as those of genome, proteome, metabolome etc., have given insights in organization of biological systems. However, current efforts do not utilize the complete potential of available metabolome data. In this study, metabolome of bacterial systems with reliable annotations are analyzed and a simple method is developed to categorize pathways hierarchically, us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 30 شماره
صفحات -
تاریخ انتشار 2014